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Abstract
We study a critical behaviour of systems dominated by Coulombic interaction.
For this purpose we use the method of collective variables with a reference
system. Starting from the Hamiltonian of the restricted primitive model (RPM),
the simplest model of ionic fluids, we obtain a functional of the grand partition
function given in terms of the two types of collective variable describing
fluctuations of the total number density and the charge density, respectively.
As the result of integration over the charge density variables, a microscopic
based effective Hamiltonian of the RPM in the vicinity of its gas–liquid critical
point is constructed. Coefficients of the effective Hamiltonian describing
the density fluctuations near the gas–liquid critical point are analysed. It is
shown that in spite of the long-range character of the Coulombic potential the
effective interactions appearing at this level of the description have a short-range
character. Consequently, the effective Hamiltonian obtained for the RPM in
the vicinity of the critical point is in the form of the Ginzburg–Landau–Wilson
Hamiltonian of an Ising-like model in a magnetic field. This confirms the fact
that the critical behaviour of the RPM near the gas–liquid critical point belongs
to the universal class of a 3D Ising model.

1. Introduction

Experimental investigations of the critical properties of electrolyte solutions displayed three
different types of behaviour: Ising-like and mean-field behaviour as well as a crossover
between the two [1–4]. In order to interpret the results, ionic systems were classified as either
solvophobic or Coulombic. In solvophobic systems, Coulombic forces are not supposed to
play a major role; the critical behaviour is that common for fluids and fluid mixtures, i.e.
Ising-like. By contrast, in Coulombic systems the phase separation is driven by electrostatic
interactions. In recent years the critical behaviour of the Coulombic systems has been a
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subject of active research. A theoretical model which demonstrates the phase separation
driven exclusively by Coulombic forces is a restricted primitive model (RPM) [3, 4]. Early
studies [5–7] established that the model has a gas–liquid (GL) phase transition. A reasonable
theoretical description of the GL critical point in the RPM was accomplished at a mean-field
(MF) level using integral equation methods [4, 8] and Debye–Hückel theory [9]. However,
a systematic theoretical investigation of the criticality of the RPM requires a microscopic
based effective Ginzburg–Landau–Wilson (GLW) Hamiltonian. Although some progress in
this direction has been made [10–13] the GLW functional of the continuous RPM explicitly
related to the microscopic characteristics has not been derived yet.

For the last decade, the GL critical point in the RPM has been much studied by
computer simulation methods [14–26]. While the theory has not provided a clear picture
of thermodynamic behaviour of the model in the critical region, very recent simulation studies
have found strong evidence for an Ising universal class [25, 26].

In this letter we address an issue of criticality in the RPM using the functional
representation of the grand partition function in terms of collective variables (CVs).
Transformation from individual to collective coordinates (the Fourier transforms of the
density fluctuations) is carried out via the corresponding Jacobian. Within the random phase
approximation for the Jacobian one arrives at the Debye–Hückel approximation for the free
energy [27]. The method of CVs was initially developed in the 1950s for the description of
charged particle systems [28, 29]. The further development [30–33] of the method was related
to the theory of phase transition.

According to the basic idea of universality [34], different systems which are described by
similar effective GLW Hamiltonians (with the same symmetry) demonstrate the same critical
behaviour. Thus, the knowledge of the effective Hamiltonian of the system is important in
determining its critical behaviour. Our purpose here is to derive, from the first principles, the
effective GLW Hamiltonian of the RPM in the vicinity of its GL critical point.

2. Functional representation of the grand partition function

The RPM consists of N = N+ + N− hard spheres of diameter σ with N+ carrying charges +q
and N−(=N+) charges −q , in a medium of dielectric constant D. The interaction potential of
the RPM is as follows:

Uγ δ(r) =
{∞ if r < σ

qγ qδ
Dr

if r � σ ,
qi = ±q. (1)

We start with the grand partition function for a two-component system (γ, δ = +,−):

� =
∑
N+�0

∑
N−�0

∏
γ=+,−

z
Nγ
γ

Nγ !

∫
(d�) exp

[
−β

2

∑
γ δ

∑
i j

Uγ δ(ri j)

]
,

where (d�) = ∏
γ d�Nγ , d�Nγ = drγ1 drγ2 · · · drγNγ (γ = +,−) is an element of the

configurational space of the γ th species; zγ is the fugacity of the γ th species: zγ = exp(βµ′
γ ),

µ′
γ = µγ + β−1 ln[(2πmγ β

−1)3/2/h3], µγ is the chemical potential of the γ th species
determined from the equation ∂ ln�/∂βµγ = 〈Nγ 〉. For the RPM we have µ+ = µ−.

Now we present the interaction potential Uγ δ(r) as a sum of two terms:

Uγ δ(r) = ψγδ(r) +
γδ(r),

where ψγδ(r) is a potential of a short-range repulsion and 
γδ(r) is a long-range attractive
part of the potential. We split the potential Uγ δ(r) into short- and long-range parts using the
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Weeks–Chandler–Andersen partition [35]:

ψγδ(r) =
{

∞ if r � σ

0 if r > σ ,


γδ(r) =




qγ qδ
Dσ

if r � σ

qγ qδ
Dr

if r > σ .

This simple form for 
γδ(r) inside the hard core changes the behaviour of the Fourier
transform for large k from the usual Coulombic k−2 to k−3 decay. As has been shown [36],
this choice of
γδ(r) for r < σ produces a rapid convergence of the series of the perturbation
theory for the free energy. The Fourier transform of 
γδ(r) = ±q2/Dr = ±
C(r) has the
form

βρ
̃C(x) = 24β∗η
sin x

x3
, (2)

where β∗ = βq2/Dσ , β = 1/kBT , η = πρσ 3/6 is the fraction density, and x = kσ .
Within the framework of the approach considered the interaction connected with a

repulsion ψγδ(r) is described in the space of the Cartesian coordinates of the particles. Here,
the hard sphere system with the diameter σ is called a reference system (RS). The interaction
connected with a long range potential 
γδ(r) is considered in the CV space. Transformation
from the Cartesian coordinates to the CVs is performed by means of the transition Jacobian.

Using the method of CVs developed for a two-component continuous system [37, 38] we
can rewrite the grand partition function of the RPM in the following way:

� = �0

∫
(dρ)(dc) exp

(
βµ1ρ0 − β

V

∑
k


̃C(k)ckc−k

)
J (ρ, c). (3)

Here �0 is the grand partition function of the RS. CVs ρk and ck describe total density and
charge density fluctuations, respectively: ρk = ρc

k − iρs
k, ck = cc

k − ics
k; the indices c and s

denote the real and imaginary parts of CVs ρk and ck. Each of ρc
k (cc

k) and ρs
k (cs

k) takes all
the real values from −∞ to +∞, and (dρ) and (dc) are volume elements of the CV phase
space: (dρ) = dρ0

∏
k �=0 dρc

k dρs
k, (dc) = dc0

∏
k �=0 dcc

k dcs
k. The unknown parameter µ1

(µ1 = (µ1,+ + µ1,−)/
√

2) is determined from the equation ∂ ln�1/∂βµ1 = 〈N〉/√2.
For the RPM, the Jacobian of the transition to the CVs averaged over the RS, J (ρ, c), is

of the same form as that for the symmetrical binary fluid [38]:

J (ρ, c) =
∫
(dω) (dγ ) exp

[
i2π

∑
k

(ωkρk + γkck) +
∑
n�1

∑
in�0

D(in)
n (ω, γ )

]
, (4)

D(in)
n (ω, γ ) = (−i2π)n

n!

∑
k1···kn

M̄(in)
n (k1, · · · , kn)γk1 · · · γkin

ωkin+1
· · ·ωkn δk1+···+kn , (5)

where M̄(in)
n = M(in)

n /
√

2
n

and the variable ωk (γk) is conjugate to the CV ρk (ck). Index
in (in = 0, 2, 4, . . . , 2n) is used to indicate the number of variables γk in the cumulant
expansion (5). Cumulants M(in)

n are expressed as linear combinations of the partial cumulants
Mγ1...γn and are given for γ1, . . . , γn = +,− and n � 4 in [33].

In (4) and (5), the cumulants M(in)
n with in = 0 are connected with the nth structure factors

of the RS. For in �= 0, M(in)
n can be expressed in terms of M(0)

n (see formulae (4.8) in [33]):

M(0)
n = 〈N〉Sn , M(2)

n = M
(0)
n−1, M(4)

n = 3M
(0)
n−2 − 2M

(0)
n−3,

M(6)
n = 15M(0)

n−3 − 30M(0)
n−4 + 16M(0)

n−5.
(6)
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In general, the dependence of M(in)
n (k1, . . . ,kn) on wavevectors k1, . . . ,kn is too complicated.

Since we are interested in the critical behaviour, the small-k expansion of the cumulant can
be considered. Hereafter we shall replace M̄(in)

n (k1, . . . ,kn) by their values in the long-
wavelength limit M̄(in)

n (0, . . . , 0). Structure factors Sn(0, . . . , 0) with n > 2 can be obtained
from S2(0) by means of a chain of equations for correlation functions [39].

Let us present J (ρ, c) as

J (ρ, c) =
∫
(dω) (dγ ) exp

[
i2π

∑
k

(ωkρk + γkck)

+
(−i2π)2

2!

∑
k

(M̄
(0)
2 ωkω−k + M̄

(2)
2 γkγ−k) +

∑
n�3

∑
in�0

D(in)
n (ω, γ )

]
, (7)

where D(in)
n (ω, γ ) has the following form (up to n = 4):

D(in)
n (ω, γ ) = (−i2π)3

3!

∑
k1,k2,k3

(M̄
(0)
3 ωk1ωk2ωk3 + 3M̄

(2)
3 ωk1γk2γk3)

× δk1+k2+k3 +
(−i2π)4

4!

∑
k1,...,k4

(M̄
(0)
4 ωk1ωk2ωk3ωk4

+ 6M̄
(2)
4 ωk1ωk2γk3γk4 + M̄

(4)
4 γk1γk2γk3γk4)δk1+···+k4 .

In (7) the linear term is eliminated by the shift ρk = ρ ′
k + M̄

(0)
1 δk (the prime on ρk is omitted

for clarity). According to (6), M̄
(0)
2 (k) = 〈N〉S2(k)/2 and M̄

(2)
2 = 〈N〉/2, where S2(k) is a

two-particle structure factor of a one-component hard-sphere system.

3. The effective Hamiltonian of the RPM in the vicinity of the GL critical point

Because M̄
(0)
2 (0) is a positive and smooth function in the region under consideration and M̄

(2)
2

is equal to a constant, we can integrate in (7) over ωk and γk using the Gaussian density
measures as basic ones. Using the Euler equations we can determine ω∗

k (and γ ∗
k ) which

provide a maximum for the functional in the exponent of (7):

ω∗
k = ρ−k

−i2πM̄
(0)
2

+ · · · , γ ∗
k = c−k

−i2πM̄
(2)
2

+ · · · . (8)

This leads to the expression

� = �0C
∫
(dρ)(dc) exp

[
a(0)1 ρ0 − 1

2!

∑
k

(
a(0)2 ρkρ−k + a(2)2 ckc−k

)

+
1

3!

∑
k1,k2,k3

(
a(0)3 ρ−k1ρ−k2ρ−k3 + a(2)3 ρ−k1 c−k2 c−k3

)
δk1+k2+k3

+
1

4!

∑
k1,...,k4

(
a(0)4 ρ−k1ρ−k2ρ−k3ρ−k4 + a(2)4 ρ−k1ρ−k2 c−k3 c−k4

+ a(4)4 c−k1 c−k2 c−k3 c−k4

)
δk1+···+k4

]
, (9)

where superscript in indicates the number of variables ck at a(in)
n . Here

C =
∏

k

1

πM̄
(0)
2

∏
k

1

πM̄
(2)
2

exp(βµ1M̄
(0)
1 ), (10)
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and the coefficients a(in)
n , taking into account the first terms in (8), can be written as

a(0)1 = βµ1, a(0)2 = 1

M̄
(0)
2

, a(2)2 = 1 + 2 β

V 
̃C(k)M̄
(2)
2

M̄
(2)
2

, (11)

a(0)3 = M̄
(0)
3

(M̄(0)
2 )3

, a(2)3 = 3M̄
(2)
3

M̄(0)
2 (M̄(2)

2 )2
, (12)

a(0)4 = M̄(0)
4

(M̄
(0)
2 )4

, a(2)4 = 6M̄(2)
4

(M̄
(0)
2 )2(M̄

(2)
2 )2

, a(4)4 = M̄(4)
4

(M̄
(2)
2 )4

. (13)

Let us analyse expression (9). Restricting our consideration to the Gaussian approximation
(neglecting the terms proportional toρ3, ρc2, etc in the exponent of (9)) we obtain the boundary
of stability with respect to fluctuations of the charge density [40]. The fact that the RPM does
not demonstrate the GL phase instability in this approximation is attributed to the absence of
direct pair interactions of density fluctuations in the model as well as to the neglect of the
effects of non-direct correlations via a charge subsystem at this level. In order to obtain the
GL spinodal curve we should take into consideration the terms of the higher order [13, 40].

Now we follow the programme proposed in [33, 37] for a two-component fluid system.
First, we distinguish the two types of variable: essential variables connected with the order
parameter and non-essential variables. Then, integrating over the non-essential variables with
the Gaussian density measure, we construct the basic density measure (the GLW Hamiltonian)
with respect to the essential variables. For the RPM in the vicinity of the GL critical point
the density variables ρk (describing fluctuations of the total number density) turn out to be
essential variables [38]. Thus, we can rewrite (9) (under the condition a(2)2 > 0) as follows:

� = �0C
∫
(dρ) exp

[
ā1ρ0 − 1

2!〈N〉
∑

k

ā2ρkρ−k +
1

3!〈N〉2

×
∑

k1,k2,k3

ā3ρ−k1ρ−k2ρ−k3δk1+k2+k3 +
1

4!〈N〉3

∑
k1,...,k4

ā4

× ρ−k1ρ−k2ρ−k3ρ−k4δk1+···+k4

]
, (14)

where

ān = ā(0)n +�an, ā(0)n = a(0)n 〈N〉n−1 (15)

and �an are correction terms obtained as the result of integration over CVs ck:

�a1 = 1√
2〈N〉

∑
q

G̃(q),

�a2 = S3

S2
2

1

〈N〉
∑

q

G̃(q) +
1

2〈N〉
∑

q

G̃(q)G̃(|q − k|) + · · · ,

�a3 = 6S3√
2S2

2

1

〈N〉
∑

q

G̃(q)G̃(|q + k1|) + · · · ,

�a4 = 6S2
3

S4
2

1

〈N〉
∑

q

G̃(q)G̃(|k3 + k4 − q|) + · · · ,

(16)

where

G̃(q) = 1

1 + β 〈N〉
V 
̃C(q)

(17)
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is a charge–charge structure factor of the RPM determined in the Gaussian approximation. It
is worth noting that G̃(q) is of the same form as the function G̃0

φφ(k) introduced in [13]. In

the next part we restrict our attention to the GL critical point where G̃(q) remains a smooth
function.

Now let us consider the coefficient ā2 in more detail. Expanding this coefficient at small
k one can readily see that the linear term vanishes. Thus, we obtain

ā2 = ā2,0 + 1
2 k2ā2,2 + · · · , (18)

where

ā2,0 = a(0)2 +
S3

S2
2

1

〈N〉
∑

q

G̃(q) +
1

2〈N〉
∑

q

G̃(q)2,

ā2,2 = 1

2〈N〉
∑

q

G̃(q)
∂2G̃(q)

∂q2
.

(19)

It is worth noting that the dependence on k results from the second order of the perturbation
theory in G̃(q). Inserting expansion (18) into (14) one arrives at the effective Hamiltonian of
the RPM in the neighbourhood of the GL critical point. The coefficients of the Hamiltonian
are explicitly given in (11)–(13) and (15)–(19). As is seen, the effective interaction that has
appeared in (14) is of a short-range character, and the effective Hamiltonian has a structure
quite similar to the effective Hamiltonian of an Ising model in an external magnetic field.

4. Conclusions

In this letter we have studied the critical behaviour of the RPM in the vicinity of the GL critical
point. For this purpose the method of CVs with a reference system was used. First we obtain
the functional of the grand partition function given in terms of the two CVs ρk and ck describing
fluctuations of the total number density and the charge density, respectively. As is known, the
Gaussian approximation of the functional of the grand partition function of simple fluids and
their mixtures produces a qualitative picture of their phase behaviour. In contrast, the full
phase diagram of the RPM cannot be obtained within the framework of this approximation. In
order to describe the GL phase transition, terms of higher order should be taken into account
in the effective Hamiltonian [13, 40]. Actually, the non-direct correlations which are formed
through the mediation of the charge subsystem cause an effective attraction between the ions
which, in turn, leads to the GL phase transition in the RPM.

After the integration over CV ck with the Gaussian basic density measure we construct an
effective Hamiltonian in terms of ρk connected with the order parameter. All the coefficients of
the effective Hamiltonian consist of two parts: the part depending solely on the characteristics
of the RS (through the n-particle structure factors of the RS in the long-wavelength limit) and
the part of mixed type. The latter is in the form of an expansion in terms of the charge–charge
structure factors. Allowance for the charge–charge correlations (through the integration over
CVs ck) leads to the contribution �a2 to the coefficient a2 (at the second power of CVs ρk)
which describes the effective attraction of short-range character.

Finally, the original Hamiltonian is mapped onto the GLW Hamiltonian of an Ising-like
model in a magnetic field. We conclude that the form of the effective Hamiltonian of the RPM
confirms the fact that the critical behaviour of the RPM near the GL critical point belongs to
the universal class of a 3D Ising model. A more comprehensive analysis of the coefficients ān

will be done elsewhere.

Part of this work was supported by the Fundamental Research State Fund of the Ministry of
Education and Science of Ukraine under project no 02.07/00303.
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